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Statistical studies of biomolecular sequences:

score-based methods

SAMUEL KARLIN

Department of Mathematics, Stanford University, Stanford, California 94505-2125, U.S.A.

SUMMARY

The massive accumulation of DNA and protein sequence data poses challenges and opportunities in
terms of interpretation and analysis. This presentation reviews the method of score-based sequence
analysis with the objectives of discerning distinctive segments in single sequences and identifying
significant common segments in sequence comparisons. A number of new results are described here
for both the theory and its applications. These include distributional theory involving several high
scoring segments in single sequences, distribution formulas for general scoring régimes in multiple
sequence comparisons, bounds for periodic scoring assignments, sensitivity analysis of genome composi-
tion and refinements on predicting exons and genes in DNA sequences.

1. INTRODUCTION

Research in molecular biology is generating great
volumes of nucleic acid sequence, amino acid
sequence, and macromolecular structure data from
the genomes of many organisms. Acquisition of these
data generally runs considerably ahead of interpreta-
tion. Among the objectives of nucleic acid and protein
sequence analysis is discovering significant patterns
and interpreting them with respect to genomic
structure and organization, DNA and RNA proces-
sing, gene expression, protein folding, biochemical
function and evolution.

Molecular sequence analysis has become an
important tool in molecular biology (for example,
see books edited by Waterman (1989), Doolittle
(1990), and Gribskov & Devereux (1992)). An
unusual pattern in a nucleic acid or protein
sequence, or a region of strong similarity shared by
two or more sequences, putatively correlate with
biological function or structure. Statistically distinc-
tive sequence features on the protein level include
extremes in certain residue usages, anomalous
distributions of charged or other residue types,
repetitive sequences (e.g. periodicities, multiplets)
and unusual spacings of amino acid types (EGF-like
domains, cysteine kringles); for examples, see Brendel
et al. (1992) and Karlin et al. (19925).

Among recent tools for detecting interesting regions
in protein sequences are score-based methods. The
theory has been developed in two contexts: (i) analysis
of a single sequence seeking to identify sequence
features that correspond to segments of significant
high cumulative score (Karlin & Dembo 1992; for
applications, see Karlin & Brendel 1992); and (ii)
analysis of multiple sequences seeking to identify
common segments having high total similarity score
(for applications, see Altschul et al. 1990; Green et al.
1993). Sequence patterns that can be investigated
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with the aid of the scoring method include peptides
featuring amino acid size anomalies, distinctive
hydrophobic sections, regions prone to phosphoryla-
tion or glycosylation modifications, and segments of
particular secondary structure potential. For single-
sequence analysis, scores appropriate for the detection
of clusters of certain amino acid types (e.g. charge
clusters, transmembrane segments and DNA-binding
domains) have been described (Brendel et al. 1992;
Karlin & Brendel 1992). For sequence comparison, a
wide range of scoring régimes have been proposed
(Dayhoff et al. 1978; Feng et al. 1985; Altschul et al.
1990; Gonnet et al. 1992; Jones et al. 1992; Henikoff &
Henikoff 1992; Brendel et al. 1994).

2. PROBABILITIES OF HIGH SCORING
SEGMENTS

In Karlin et al. (19904) and Karlin & Dembo (1992)
(see also Arratia & Waterman 1985, 1989; Arratia
et al. 1988, 1990) we presented probabilistic formulas
for characterizing statistically significant sequence
configurations with respect to a general scoring
scheme associated with letter attributes and with
varying degrees of similarity in letter matches. The
simplest model is as follows: Let X;, Xy, . . ., X, be
independent identically distributed letters drawn
from a finite alphabet {a;}] such that
Prob{X = ¢} =Prob{X =s5}=p;, i=1, 2, . . ., 7,
pi >0, > p; =1, interpreted as sampling the letter g
yields a score X =s; where r = 4 for DNA, r = 20 for
amino acids, r = 64 for codons. Theory exists for the
more complicated case of Markov-dependent
sequences but will not be discussed here (see Karlin
& Dembo 1992). Let

Sm = Zm:Xia

=1

So =0,

m=1,2,..,

be the cumulative score process. The quantity
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M, = supg <t < 1 < 2(S; — S) corresponds to a segment
of the sequence {S,,}§ with maximal score. The essential
assumptions are that {S,} entails a negative drift
(negative mean score for each X;) and some s; is
positive. A parameter fundamental to the limit
distribution of M, is the unique positive root 6* of the
equation Elexp(8*X)] = 1 (E refers to expectation). It
is proved (Karlin & Dembo 1992) for z large that

Pr [M,, > l_;l*_ﬂ+ x] ~ 1 —exp{—K*e "}, (1)
with accessible computation for K* and §* (see Karlin
& Altschul 1990). The asymptotic formula (1) can be
used to establish benchmarks of statistical significance
for wvarious distinctive segment features such as
hydrophobicity, charge and DNA binding (e.g.
Karlin & Brendel 1992). For this purpose we set the
right-hand side of (1) to some significance level, for
example, p*=0.01, and solve for x* =x(p*). A
maximal segment score exceeding (lnn/8%)+ x* is
significant at the p* level.

The analysis also provides information on the
composition of high-scoring segments. For each
y >0, let L(y) = T(y) — K(y) be the length of the
first segment extending from K(y)+ 1 to T'(y) of
aggregate score exceeding y. Let U, be independent

vector random variables where U, is independent of
X,k # m. Form

T(y)

W(y) = Z Uy

K(y)+1

so that W(y) cumulates functionals of the X samples
in a high-scoring segment. Then W(y)/L(y) — u* as
y — oo, u* = E[Ue" 1] (Dembo & Karlin 1991).

Taking X; € A equal 1 and 0 otherwise, then
W(y)/L(y) is the fraction of samples in A that lie in a
high-scoring segment. Thus, over high-scoring segments
the relative frequency of score s; is approximately
q; = p; exp{0*s;}. It follows that scores defined by
si = In(g;/p,), (2)
(a multiplicative scaling of s; will not change any of
the theory or its applications) identify high-scoring
segments of target frequencies ¢; (Karlin & Altschul
1990; Karlin & Brendel 1992). It should be
emphasized that for any segment where S, —S§; is
large, the letter frequencies are biased toward the
values ¢; ~ pe?si, i=1, . . ., r. Conversely, if the
letters in a segment are distributed with frequencies ¢;,
then with high probability the aggregate score of this
segment would be high.

Another statistic that is useful in appraising a given
set of scores concerns the length L(y) of a high scoring
segment of aggregate score at least y (y large). An
asymptotic confidence interval for L(y) is given by

_y Ly
Ly) =2+ pla)5 /22, 3)
where

T
_ 0*s;
V—_S_ pisie
=1

r
w= § pi‘gzzeo - V27
=1

Phil. Trans. R. Soc. Lond. B (1994)

and p(a) is the normal distribution quantile point
for an a% confidence interval (Dembo & Karlin
1993).

3. APPLICATIONS OF FORMULAS (1) AND (2)

There are natural score assignments for certain
sequence features. Examples include:

1. Scores emphasizing positive charge. For the
positively charged amino acids lysine and arginine,
s =+2; for the negatively charged amino acids
aspartate and glutamate, s = —2; for other amino
acids, s = —1.

2. Scores for hydrophobic profile. One can use the
Kyte-Doolittle scale or any of the many other scales
that have been proposed for assessing hydrophobicity
(see von Heijne 1978, Chapter 5; see also Brendel et al.

1992).
3. Scores derived from target frequencies. Let
{g1,92, - - -, ¢,} be a set of desirable target frequencies

of the letter types, and {p1, . . ., p,} the average letter
frequencies. In certain contexts, the scores
s;i = log(q;/p:),1=1,2, . . .,r are appropriate since in
a high-scoring segment letter a; tends to occur with
the target frequency ¢; = p; exp(6*s;), see formula (2).

Example of a mixed charge cluster

Assign the score values s = 2 for the acidic amino
acids aspartate and glutamate and for the basic amino
acids lysine, arginine and histidine, but the score —1
for all other amino acids. Consider the human keratin
(found in fingernails and hair) 67K cytoskeletal type
IT protein (length 643 amino acids) with a frequency
of charged amino acids of 20.1%. The maximal
scoring segment is located at positions 238-291
(contains 11 basic and 14 acidic residues) of
aggregate score 21 with probability p* of achieving
this level or higher by formula (1) less than 0.008.
This maximal scoring segment of charge concentra-
tion is postulated to be functionally important for the
keratin protein. The keratin protein also contains two
significantly long uncharged segments at positions 42—
152 and 518-586.

4. SOME EXTENSIONS OF SCORE-BASED
METHODOLOGY

(a) Distributional properties for sums of high-
scoring segments

Applications of the scoring method often concern the
sum of the r highest segment scores. This measure is
appropriate when there may be several distinct
segments of a given type within a DNA or protein
sequence (e.g. multiple purine tracts, several trans-
membrane segments, multiple charge clusters). For
sequence comparisons, the existence of insertions or
deletions can break an alignment into several pieces.
The sum of the scores of these pieces can be an
appropriate measure of sequence similarity. Denote
the 7-highest distinct scoring segments of the model (1)
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as M,(,l) =M, M,(L2), ... ,Mﬁr). It is convenient to deal
with the centered segment scores

; 5 lognK* )
S,E’:M,(,)—T i=1,2,...,r. (4)
It can be proved that the joint limiting density of (4) is
Sty m) = (0%) expf—e " ye bttt )

defined on the domain », < x,_; < ... < x; (Karlin
& Altschul 1993). For the variable

Sy = ; s

integrating out the accessory variables from (5) we
deduce the limit density (n — 00) of §,, as

Six) =
oy [ (0 )
(6%) A=), exp{—e My, (6)
or equivalently
logn K*
—gr =4 =)

From the joint distribution formula the distribution of
the r-th distinct highest segment score is easily derived
having the density

log nK*
Pr{M,(Z’) - _._Ogg’; = x} =g (x) =

lim,_ o Pr{M®V + ...+ M) —¢

o*

(r—1)! e exp{_e—o*x}“ —00 < x < 00, for n large.

(b) Periodic scoring schemes

Periodic scoring schemes are appropriate for detect-
ing amphipathic helices and other periodic sequence
structures. We illustrate the period-2 model. Suppose a
letter sequence is generated by scores {s;}] following the
probabilities { p;}1 at the even-sequence positions and
scores {s/}] with probabilities { p}] at the odd-sequence
positions. In line with the essential requirements in our
sequence analysis of a negative mean score per letter, we
assume Y (s;p; + sip") < 0 and at least for one pair 7,7, s;
and s} are positive. Denote s; + 5} = s;; and p;p; = m;.
Determine 8* such that

i e’ = (X’:/’ieﬁ*ji) (iﬁj{eeﬁ; > =1 and K*
ij=1 J=1

=1

(as in formula (1)) corresponding to the scores (s; + s})
occurring with probabilities m;. For this model the
probability law for the maximal segment score M,
obeys the inequalities

1
Pr{M,, > Og"+x} <

0%

1= prexp{—K+e ")
=1
max

1— Z prexp{—K#e "}
i=1

Phil. Trans. R. Soc. Lond. B (1994)
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(e) Distribution theory for high scoring segments
allowing for a limited number of insertions or
deletions

For a single sequence, consider the maximal scoring
segment of length 4, (n refers to the length of the

original sequence). We know that
r

w* = Zsip,-e%‘ > 0,

=1

4,/logn — proed
so that the length 4, is of order logn. The empirical
frequencies of the different letters over the segment 4,
follow the target frequencies p;e®". We delete from the
maximal segment £ occurrences of the letter a* = g;-
whose score value satisfies —s* = max(—s;), i.e. s* has
the most negative value. For any finite £ (or even
infinite & of smaller order than logn (e.g.
k < loglogn) the number of occurrences of g;+ in the
maximal segment is asymptotically p;. exp(8*s*) log n.
The score M, = M, — ks* gives the maximal score of
an interval allowing £ deletions. Since

| SN
Pr{M,L< Oeg*n-i-x} ~e K )

then
1 )ty
Pr{M;f =M, — ks* <—%§<ﬁ+x—ks*} ~e K ,

or
logn
0*

and statistical significance for maximal scoring
segments allowing £ deletions can be evaluated via
the last formula. Corresponding constructions can be
used in sequence matching allowing for at most £
aligned letter deletions.

Pr{MZ < + y} ~ exp{—K'e e "V}

(d) Large exceedances in vector scores

In vector scoring of sequences, successive positions are
vectors X; € R? (Euclidean d-dimension) with compo-
nents of different attributes in the sequence position. For
example, for protein sequences, the components could
be simultaneous charge, hydrophobicity, and steric
measurements of the amino acids. High quality
segments correspond to indices K(y) and 7T'(y) of the
sequence such that Sy, — Sg(,) first attains a multi-
variate score corresponding to a set 4. Consider the first
segment of S, which hits a rare set y4 with y large (y4
consists of all vectors ya,a € A). Thus, if 4 requires that
the minima of each coordinate are at least ¢, then a
multivariate high score is achieved provided over the
segment all the cumulative scores for each coordinate is
at least yc. For detailed developments of the above
theory, see Dembo et al. (1994a).

(e) Sequence matching and significant average
segment score (s4s value)

In DNA and protein sequence matching, segment
scores are of the form

t
Z F(ag, diy),
=1
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where a; is the i-th letter in the first sequence, a’ is the
Jj-th letter in the second sequence and F(x,y) is the
score for the letter pair (x,y). For amino acid sequence
comparisons, a wide range of scoring régimes have
been proposed. The paM, BLOSUM, and SISS scoring
matrices will identify high scoring segments common
to different protein sequences. The paM similarity
scores (Dayhoff et al. 1978; Jones et al. 1992) have
been developed from considerations of evolutionary
amino acid replacements in homologous genes from
different species. The BLOSUM score matrices were
constructed centering on blocks of functional motifs
from various protein classes (Henikoff & Henikoff
1992). The siss scoring scheme is based on screening
of statistically significant long segments among protein
sequences (Brendel et al. 1994). All segment pairs with
scores significant at the 1% level can be identified (i.e.
those with probability less than 0.01 of attaining a
score at least as high for a segment pair in random
sequences of the same lengths and amino acid
frequencies). One way of scoring global similarity
between two protein sequences is as follows. For each
pair of protein sequences, the significant average
similarity score (sas value) is the maximal value with
respect to all consistently ordered high (significant)
scoring segments (overlaps are eliminated) calculated
by summing these segment scores and dividing by the
minimal length of the two protein sequences (Karlin et
al. 1994). How should one interpret sas values? As the
score for amino acid identities with the pam 120
matrix average, about 5.3, a sas value of 2.00
generally reflects about 30%—-40% identify, a sas
value of 3.00 corresponds to about 50%—-60%
identify, and a sas value exceeding 4.00 carries at
least 75% identify.

We illustrate the method of sas values on the major
virion glycoprotein B (VGLB) sequence available in
11 herpesvirus genomes. Herpesviruses are widespread
in vertebrate species, sharing several moderately to
well-conserved ,genes based on amino acid identity
comparisons (e.g. DNA polymerase, major capsid
protein, VGLB) even though they exhibit a dramatic
variation in mean G+ C genomic frequency ranging
from 35% to 75% (Honess 1984). The herpesviruses
are commonly perceived to be of ancient origin, at
least 300 million years old. On the basis of biological
characteristics, tissue tropism, genomic organization

Table 1. SAS-scores for glycoprotein B of herpesviruses

0 10.0 20.0 300 40.0

! ' ' WWWWWV’VWWWWWVVIWWWI ILL _0-05
(I) 10.0 20.0 30.0 40.0 |

| wwwwv;wwwwww ........ l Y24 -0.10
0 19.0 ZQ.O 39.0 49.0 |

e $85S....58....8585.8S. WWWW. W..WWWW.......W. | Y24 -0.20
0 100 20.0 30.0 40.0 |

loveereerreenns R l ..wwww...‘ ............... '..‘ww I u —-0.40
(]) 10.0 20.0 30.0 40.0 1
. el w =070
0 IQ.O 2Q.0 39.0 49.0 |

Lottt ettt R rou —-1.80

Figure 1. Map of strong and weak segments in lambda
phage for various score stringencies. The figure describes
schematically the strong and weak segments of the lambda
(M) phage genome (45815b.p.). It is clear and originally
demonstrated experimentally (Inman 1966) that A divides
into two halves, one relatively G+ C% rich (about 55%)
and the other G+ C% poor (about 45%); see Karlin et al.
(19924) for further discussion.

and amino acid block identities, the herpesviruses are
classified into o, B and 7y types. The a-herpesviruses
include EHVI1 (equine herpesvirus 1, host horse),
HSV1 (herpes simplex virus 1, human), VZV
(varicello-zoster virus, human), PRV1 (Pseudorabies
virus 1, pig), MDV (Marek disease virus, turkey),
BHV1 (bovine herpesvirus 1, cow), BHV2 (bovine
herpesvirus 2, cow); the PB-herpesviruses include
HHV6 (human herpesvirus 6) and HCMV (human
cytomegalovirus); the 7y-herpesviruses include EBV
(Epstein-Barr virus, human) and HVS (herpes saimiri
virus, green monkey).

The length of the (VGLB) gene averages about 900
residues, slightly less in HVS, and only a fragment of
length 259 residues was available from HHV6.
Among the o sequences the sas values were in good
agreement, see table 1. The within y-class sas value
was 2.00, whereas the between y and o sequence

VGLB  Length EBV HVS HCMV HHV6f EHVI HSVI VZV PRVI MDV BHVI BHV2
EBV (857)  —

HVS (808)  2.00

HCMV  (906)  1.13  1.09  —

HHV6f (259)  1.22  1.06  1.48 —

EHVI  (980) 081 0.89  0.77 0.86

HSV1  (904) 093 082  0.87 0.70 252 —

VZV (868)  0.88 0.80  0.85 0.65 276 253 —

PRVI  (913) 0.88 068 078 0.79 2.83 262 289 —

MDV  (865)  0.80 0.88  0.90 0.69 2.28 254 254 220 @ —

BHVI  (928)  0.69 0.72  0.68 0.80 257 239 278 284 236 @ —
BHV2  (917) 086 083  0.86 0.73 2.41 356 259 250 248 226 @ —

Phil. Trans. R. Soc. Lond. B (1994)
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Table 2. Score sensitivity analysis of three two-letter alphabets

(1. Stringent S segments of EBV tend to occur with short tandem repeat sequences predominantly associated
with the latent genes of EBV. The only stringent W segment in EBV abut 5 the 3 kb repeats. The second most
concentrated A+ T region is the ori-P (origin of latent replication) region of EBV about 60% A+ T, but this
region does not yield any significant stringent W segments (cf. Karlin 1986).

2. The paramount high-scoring R segments are also associated with two primary latent (EBNA 1 and EBNA
2) genes of EBV. The only stringent Y segments are part of the 3 kb repeats.

3. In the amino-keto alphabet, again the only rich M and K segments are connected with repeat elements of
latent genes.

Interpretations and implications of this sensitivity analysis applied to all the human herpes virus genomes are

discussed in Karlin & Cardon (1994).)
Table 2a. High-scoring strong (S) and weak (W) nucleotide segments (sensitivity analysis)

mean score significant

per letter (u) segment length  comments
Epstein-Barr virus (EBV)  Srich -1 50608-52102 1494 most of 12 x 125 b.p. repeats
(length 172282 b.p.) 70400-70516 116 structural virion gene BDLF1:
G+C%=59.7 tegument, overlaps 9 x 15b.p. repeats
(Baer et al. 1984) 100131-100231 100 part of 10x‘15b.p.” repeat in EBNA3

170 146-170 294 149 in terminal repeats
170684-170833 149 in terminal repeats
171207-171356 149 in terminal repeats
171745-171 894 149 in terminal repeats

-1.5 50614-52082 1468
70400-70516 116

-2 70400-70516

—4 none

Wrich -1 11519-11605 86 5 proximal to 3 kb repeats

11855-11950 95

-1.5 11855-11909 54

-2 none

Table 2b. High-scoring purine (R) and pyrimidine (Y) segments

mean score significant

per letter (u) segment length  comments
EBV R rich -1 49 525-49 580 55 part of EBNA 2
(R=A+G freq.=49.2%) 108044108108 84 part of EBNA 1

108211109089 878 includes long ala gly tract in EBNA 1
169105-169194 89 part of LMP (latent membrane protein)

—-1.5 108211-108932 721
-2 108216-108932 716
—4 none
Y rich -1 12077-12138 61 in 3 kb repeats

15149-15210 61 in 3 kb repeats

—1.5 no}le

Table 2¢. High-scoring amino (M) and keto (K) segments

mean score significant
per letter (u) segment length  comments
EBV M rich —1.0 48678-48 802 124 14 of CCCCCACCA repeats of EBNA 2
M% =50.2% -10 48 689-48 757 68
Krich -1.0 90498-90611 113 in BLLF 1 contained in six copies of
21 b.p. approximate repeats
-2.0 none

Phil. Trans. R. Soc. Lond. B (1994)
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Figure 2. Plots of excursion scores for human beta globin region on chromosome 11 (73326b.p.). Each plot
shows excursion scores for one reading frame: frames 1-3 are in the direction 5 — 3’ as presented in Genbank,
frames 4—6 are in the direction 3’ — 5. The ordinate of each plot is determined by the recursion
Ey =0,E; = max{E_; + X;,0}, for scores X; at position i = 1,2, . . ., traversing the sequence. Thus, when the
score sums become non-positive, an excursion has ended and cumulative scores start from zero for the next
excursion. Excursions are regarded as high scoring segments (Hss) if they exceed the 0.01 significance level of the

maximal segment score.

comparisons yielded sas values in the range 0.68—
0.93. The comparison of y sequences with the HCMV
and HHVG6 representatives of B sequences gave higher
sas values, around 1.10. The sas value for the B
sequences versus each o sequence yielded sas values in
the range 0.65—-0.90, about the same as for a vy
sequence compared to an o sequence. The compar-
isons with respect to most homologous proteins
(including VGLB) tend to produce sas values
among the a-herpesviruses significantly greater than
the sas value (Karlin e al. 1994) within the B-
herpesviruses (HHV6 versus HCMV) and within the
v-herpesviruses (EBV versus HVS). The diminished
sas values for the within B-class protein comparisons
relative to the within a- and y-herpesviruses suggest
that HHV6 and HCMYV separated earlier than did
the other herpesviruses. The higher sas values among
the o-herpesviruses supports the hypotheses that

Phil. Trans. R. Soc. Lond. B (1994)

a-herpesviruses are of more recent ancestry. For
elaborations on this example, see Karlin ¢t al. (1994).

5. GENOMIC SENSITIVITY ANALYSIS

Local clustering in nucleotide sequences can be explored
by scoring statistics at different levels of sensitivity. To
illustrate, consider the task of identifying segments of
significantly high A+T content. We assign a positive
integer score s, to weakly bonding bases (A and T) and a
negative integer score s, to strongly bonding bases (C
and G) such that the expected score per nucleotide
U= puS, + pss; is negative, where p, and p; are the
frequencies of A+T and C+G in the sequence,
respectively. Different values for u can be attained by
adjusting s, and s, appropriately, thus tuning the
sensitivity of the method. For example, for u = —0.5
high-scoring segments would be long clusters of A+T
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Figure 2.

(with a modest proportion of G + C bases interspersed),
whereas pu = —10 would tend to select mostly runs of
A+T (allowing at most one C or G per 10 weakly
bonding bases). In this way the scoring statistic provides
a versatile tool that allows evaluation of significance of
clustering both in terms of runs and long compartments
(isochores).

We offer some examples of the score sensitivity
analysis applied to the bacteriophage genome of
lambda (A) and to the human herpesvirus genome
of Epstein-Barr virus (EBV). We will deal with the
three two-letter alphabets strong (S) versus weak (W)
bases: purine (R) versus pyrimidine (Y) where R ={G
or A}, Y={C or T}; keto {K} versus amino (M),
K={T or G}, M={A or C}. To illustrate, consider a
DNA sequence S and a given two-letter alphabet, say
S versus W. We seek to identify high scoring C+G
segments with increasing stringency. Accordingly, we
set scores 1 for S bases and —s for W bases with s
calculated such that the expected score per nucleotide
lﬂ - Sjrw = *—I,L([.L = 1,15,2,25,4‘,10) where J‘; :f(;+c
is the frequency of strong bases in the sequence and fj
is the corresponding frequency of weak bases. For
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Continued.

each specified p, we determine all segments (of
minimal length 50b.p.) with a high score at the
0.99 significance level, i.e. the probability of observing
such a segment score in a random sequence of the
same S, W base composition is less than 0.01, cf. figure
1, see also table 2. The sensitivity analysis in the
{S,W} alphabet is symmetric (synonymous) for a
strand and its complementary strand. However, a
purine-rich stretch corresponds to a pyrimidine-rich
stretch of the other strand and similarly for the K
versus M alphabet. This is true because in general,
including the examples treated here, the purine
frequency for sequences = 50kb tend to be very
close to 50% and the same for the amino frequency.
On the other hand, the S (G+ Q) frequencies tend to
be highly variable, for example, ranging in prokary-
otic and eukaryotic organisms from 20% to 80%.

6. SCORE-BASED PREDICTIONS OF EXONS

Identification of all genes and the construction of genetic
maps for many genomes (human, model organisms, e.g.
mouse, Drosophila, C. elegans, yeast, viruses) is a major
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Figure 3. (a) An enlargement of figure 2 for the interval of positions 61 000-64 000. (b) An enlargement of figure
2 for the interval of positions 54 000—57 000.

objective of the human genome project. This is a
formidable task because of the phenomena of split genes
in eukaryotes. A natural scoring scheme is the log odds
ratio s, = In(q,/p,),v = 1,2, . . ., 64, defined for all
codons where the target frequencies ¢, are determined
from a data base of known genes in an appropriate class
and p, are based on all triplet frequencies across all
frames in the sequences under study. High-scoring
segments flanked with splice signals and possibly other
transcriptional control elements will be considered
potential exons.

Several recent algorithms have demonstrated some
success in predicting coding regions in genomic DNA.
Those in most widespread use include the programs:
GRAIL (Uberbacher and Mural 1991), GeneModeler
(Fields & Soderlund 1990), GeneID (Guigo et al.
1992), sorriND (Hutchinson & Hayden 1992),
GeneParser (Snyder & Stormo 1993) and Markov
chain methods (e.g. Borodovsky & MclIninch 1993),
all of which combine the two classical methodologies
of ‘gene search by signal’ and ‘gene search by content’

Phil. Trans. R. Soc. Lond. B (1994)

that emerged from early attempts to identify
contiguous coding regions in prokaryotes reviewed in
von Heijne (1987). Search by signal methods rely on
sequence motifs such as promoters, start and stop
codons and splice site motifs to predict candidate
genes, whereas search by content methods exploit
features in coding regions such as codon usage (Staden
1990), local compositional complexity (Konopka &
Owens 1990), and exon and intron length distribu-
tions. The signal and content information typically is
combined according to some predefined rules or by
connectionist artificial intelligence techniques with
various weighting and training schemes. In rule-based
procedures (e.g. GeneModeler, GenelD), candidate
genes include all predicted regions meeting the
criteria of the particular set of rules. The connec-
tionist algorithms judge predictive accuracy according
to similarity of the candidate gene to the training set,
with predictions often ranked in order of confidence
(e.g. confidence levels of ‘Excellent’, ‘Good’, or
‘Marginal’, in GRAIL, levels 1-5 in sOrR¥IND). Related


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

®)

Statistical studies of biomolecular sequences

S. Karlin 399

frame 1
T

frame 2

12

frame 3

0
54000 55000

56000 57000

position

Figure 3. Continued.

artificial neural network training schemes are applied
in Brunak ef al. (1991) and Engelbrecht et al. (1992).

For exon prediction, the scoring method offers a
distinct advantage over extant methods by providing
a means to evaluate the statistical significance of
predicted coding regions rather than broad classifica-
tions of predictive accuracy. The scoring approach for
exon prediction makes use of ‘target frequencies’ of
codons (gq, o0 =1, . . ., 64) drawn from a database of
known genes in a particular species or subclass, and
triplet frequencies (py) across all frames in the
sequences at hand. Scores for each codon are given
by In(gy/py), a likelihood ratio as suggested by
equation (2). The algorithm identifies segments of
high aggregate score, or high-scoring segments (HsS),
with probability of occurrence < 0.0l in any reading
frame of the sequence of interest. Relevant statistical
formulae for these assessments are given in equations
(1) and (2). As the Hss are determined entirely by the
data, no segment length restrictions are imposed,
except that we exclude Hsss of length < 60 nucleo-
tides (20 codons) for conservative prediction. Stop
codons are virtually always excluded from the

Phil. Trans. R. Soc. Lond. B (1994)

predicted exons because their large negative scores
(owing to low target frequencies) virtually prevent
them from meeting the aggregate score threshold for
significance.

As in other procedures of this genre, we combine
‘content’ information (from the scoring approach)
with ‘signal’ information. High-scoring segments are
extended in both directions until a start codon (5") or
stop codon (3') is located in-frame. This extension
begins 3-5 codons within each terminus of the
predicted segment. If the HSS remains significant at
a lower threshold (e.g. 0.15), the segment is
considered a strong exon candidate. Otherwise, the
nearest three splice sites (AG 5’ of the segment; GU on
the 3’ side) are located irrespective of frame, again
beginning 3-5 codons within the segment, and the
segment score is re-evaluated for significance. With
sufficient significance, the extension is proposed as a
true exon. The methods also exploit established
patterns and motifs of amino acids, the relative
abundance of local secondary structures in regulatory
regions and relative paucity thereof in coding
sequences, and complexity analysis. Another device
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will rely on evaluations of translations of DNA
sequences in all frames and analysis of hits in
comparing against the available protein data bank.

Prediction of exons in B-globulin sequence

We have evaluated the human B-globin region as a
test of the scoring approach. The published sequence
for this region spans 73.3 kb and contains five genes (g,
Gv,Av,3,B), each with three exons. The sequence also
includes a pseudogene, several Alu repeats, and a
Kpnl (LINE) sequence. Figure 2 shows the exons
predicted by the scoring method, which include exact
or overlapping portions of 12 of the known exons. One
of the pseudogene exons is also detected by the
method; the other two pseudogene exons in this
sequence contain several stop codons and are correctly
discriminated against. An enlargement (figure 3a) of
the region 54 800-58 900 selects virtually the precise
exons (up to at most one codon) of the beta globin
gene. Figure 35 does the same for the g-globin gene.
Similar fine tuning identify the almost exact exons of
the Gy, Ay, and 8 genes (not shown).

7. MATHEMATICS OF SEQUENCE
MATCHING WITH GENERAL SCORES

In DNA and protein sequence matching, let F(x,y) be
the score for the letter pair (x,y). For the longest perfect
match with few errors, and the longest quality ¢ match
(% matching exceeding ¢), the formulas of Karlin &
Ost (1985, 1988), Arratia et al. (1986, 1990), Arratia &
Waterman (1989) determine the asymptotic distribu-
tion of the maximal matching intersequence segment, at
least when the underlying probability laws of the
sequences are similar enough. The maximal segment
score allowing shifts (variable ¢,7) is
4

Mn = 0 <?}a<xnd{l§_:lF(Xi+l7 Yj-H)}'

4>0 -
The two sequences are assumed to be independent:
Xy, . . ., X, following the distribution law uy and
Yy, ..., Y, following the distribution law py, where
py and uy refer to probabilities on the alphabet 3y
and )y of the sequences {X;} and {¥;}, respectively.
We assume that the expected score per letter pair is
negative and there is positive probability of attaining
some positive pair score, in which case M, — oo
corresponds to rare events. The growth asymptotics of
M, is characterized in the following theorem.

Theorem 1. (Dembo et al. 1994b). There exists a finite
and positive constant Y*(uy,uy) depending on uy
and py such that M,/Inn — y*(uy, uy). The calcula-
tion of the constant y* involves relative entropy
functionals described below.

Let ) =3 x x >_y be the alphabet of letter pairs,
and v and u typical probability measures on > . The
relative entropy of v with respect to w is denoted by
H(v|p), and for > = {by, . . ., by} is given by the

formula:
IR ()
H(Vllu') - ; V(bl) lOg ,u,(bi) .

Phil. Trans. R. Soc. Lond. B (1994)

Let
H*(v|px,py) =

1
max{§H(V|MX X MY)aH(VXWY)’H(VYl'U‘Y)}’

where vy and vy denote the marginals of v on Yy
and Yy, respectively. We abbreviate H*(v) for
H*(v|uy,pny). The expected score per letter pair
with respect to the probability law v is denoted by

Ey[F] =Y F(a,b)v(a,b).
(a:b)
Define J(v) = E,(F)/H*(v). The constant y* is
V¥ = 7*(ix, py) = max J(v).
There is, in analogy with the score of the maximal

segment score for a single sequence, the special
measure

a*(a,b) = pyx(@)py(b)e” ", (7)
where 0% is the unique positive value satisfying the

equation E, ., [e"F]=1. It can be proved that
always

1 2
7% < Y*(px,py) < o

Under the condition

1 * %
EH(CX*L“'X X :“'y) > maX{H(ath"x)aH(ayl:‘"y)}v (8)
the following holds:

Theorem II. (Dembo et al. 1994¢). Assuming (8), then

v* =2/6* and

log n?
9%

Pr{Mn < + x} — exp{—K*e "}

n—o0, (9)

where K* is the constant associated with a one
sequence (of length #%) evaluation of the maximal
scoring segment (equation (1)). The length 4, of the
maximal score segment is

The empirical match distribution on A, is that of the
probability measure a* defined in (7).

For symmetric scores (F(x,y) = F(y,x)) and
px = py, the condition (8) holds provided F(x,y) is
not of the form s(x) + s(y). The condition (8) scems to
be of wide scope. In all cases, the right-hand side of
(9) provides an upper bound.
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